标签传播算法

算法简介

标签传播算法 (LPA)是由Zhu等人于2002年提出,它是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建立关系完全图模型,在完全图中,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。由于该算法简单易实现,算法执行时间短,复杂度低且分类效果好,引起了国内外学者的关注,并将其广泛地应用到多媒体信息分类、虚拟社区挖掘等领域中。本文利用关键字labelpropagation、标签传播、标签传递、标记传播、标记传递等词作为关键词,对国内外数据库及网络资源进行了检索,结果发现,目前国内外相关文献期刊论文约有90篇,其中国外82篇,国内8篇,国内外硕博论文3篇。

区块星球登载此文出于传递信息目的,并不意味着赞同其观点或证实其描述。本文不构成投资建议。投资者据此操作,风险自担。